Зачем нужны уравнения?

Зачем нужны уравнения?

Вычислительные задачи бывают прямые и косвенные.

Вот пример прямой задачи: какова масса куска сплава, на изготовление которого пошло 0,6 дм3 меди (плотность 8,9 кг/дм3) и 0,4 дм3 цинка (плотность 7,0 кг/дм3)?

При ее решении находим массу взятой меди (8,9 · 0,6 = 5,34 кг), затем массу цинка (7,0 · 0,4 = 2,8 кг) и, наконец, массу сплава (5,34 + 2,8 = 8,14 кг). Выполняемые действия и их последовательность диктуются самим условием задачи.

Вот пример косвенной задачи: кусок сплава меди и цинка объемом в 1 дм3 имеет массу 8,14 кг. Найти объемные количества меди и цинка в этом сплаве. Здесь из условия задачи не видно, какие действия ведут к ее решению. При так называемом арифметическом решении нужно проявить подчас большую изобретательность, чтобы наметить план решения косвенной задачи. Каждая новая задача требует создания нового плана. Труд вычислителя затрачивается нерационально. Для рационализации вычислительного процесса и был создан метод уравнений, который является основным предметом изучения в алгебре. Суть этого метода такова.

  1. Искомые величины получают особые обозначения. Мы пользуемся для этой цели буквенными знаками (предпочтительно последними строчными буквами латинского алфавита x, y, z, u, v). Условие задачи с помощью этих знаков и знаков действий (+, — и т. д.) «переводится на математический язык», т. е. связи между данными и искомыми величинами мы выражаем не словами и фразами разговорного языка, а математическими знаками. Каждая такая «математическая фраза» и есть уравнение.
  2. После этого мы решаем уравнение, т. е. находим значения искомых неизвестных величин. Решение уравнения производится совершенно механически, по общим правилам. Нам не приходится больше учитывать особенности данной задачи; мы только должны применять раз навсегда установленные правила и приемы. (Выводом этих правил и занимается в первую очередь алгебра.)

Таким образом, уравнения нужны для того, чтобы механизировать труд вычислителя. После того как уравнение составлено, решение его можно получить вполне автоматически. Вся трудность решения задачи сводится лишь к составлению уравнения.

Источник: М. Я. Выгодский. Справочник по элементарной математике. Москва 1986.

Похожие записи

Сто тысяч за доказательство теоремы... Одна задача из области неопределенных уравнений приобрела громкую известность, так как за правильное ее решение было завещано целое состояние: 100 0...
Алгебра. Историческая справка... Термин «алгебра» происходит от названия сочинения Мухаммеда аль-Хорезми «Альджебр аль-мукабала» (IX век), содержащего общие методы решения задач, сво...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *