Круглые числа

Вероятно все замечали на себе и на окружающих, что среди цифр есть излюбленные, к которым мы питаем особенное пристрастие. Мы, например, очень любим «круглые числа», т. е. оканчивающиеся на 0 или 5. Пристрастие к определенным числам, предпочтение их другим, заложено в человеческой натуре гораздо глубже, чем обыкновенно думают. В этом отношении сходятся вкусы не только европейцев и их предков, напр., древних римлян, — но даже первобытных народов других частей света.

При каждой переписи населения обычно наблюдается чрезмерное обилие людей, возраст которых оканчивается на 5 или на 0; их гораздо больше, чем должно бы быть. Причина кроется, конечно, в том, что люди не помнят, твердо, сколько им лет и, показывая возраст, невольно «округляют» годы. Замечательно, что подобное же преобладание «круглых» возрастов наблюдается и на могильных памятниках древних римлян.

Эта одинаковость числовых пристрастий идет еще дальше. Один германский психолог (проф. К. Марбе) подсчитал, как часто встречается в обозначениях возраста на древне-римских могильных плитах та или иная цифра, и сравнил эти результаты с повторяемостью цифр в обозначениях возраста по переписи в американском штате Алабама, где живут преимущественно негры (примечание редактора: сохранено оригинальное слово из книги, хотя в наше время более политкорректно говорить «афроамериканец»). Получилось удивительное согласие: древние римляне и современные нам негры до малейших подробностей сходятся в числовых пристрастиях! Конечные цифры возраста, по частоте их повторяемости, располагались в обоих случаях в одинаковой последовательности, а именно:

0, 5, 8, 2, 3, 7, 6, 4, 9 и 1.

Но и это не все. Чтобы выяснить числовые пристрастия современных европейцев, упомянутый ученый производил такого рода опыты: он предлагал множеству лиц определить «на-глаз», сколько миллиметров заключает в себе полоска бумаги, например, в палец длиною, и записывал ответы. Подсчитав затем частоту повторения одних и тех же конечных цифр, ученый получил снова тот же самый ряд:

0, 5, 8, 2, 3, 7, 6, 4, 9 и 1.

Нельзя считать случайностью, что народы, столь отдаленные друг от друга и антропологически, и географически, — обнаруживают полную одинаковость числовых симпатий, т. е. явное пристрастие к «круглым» числам, оканчивающимся на 0 или 5, и заметную неприязнь к числам некруглым.

Любовь к пятеркам и десяткам находится, без сомнения, в прямой связи с десятичным основанием нашей системы счисления, т.е. в конечном итоге — с числом пальцев на обеих руках. Остается неразгаданной лишь та правильность, с какой слабеет эта симпатия по мере удаления от 5 и 10.

Это пристрастие к округленным числам обходится нам, надо заметить, довольно дорого. Товарные цены в розничной продаже всегда тяготеют к этим круглым числам: некруглое число, получающееся при исчислении продажной стоимости товара, дополняется до большего круглого числа. Цена книги редко бывает 57 коп., 63 коп., 84 коп., — а чаще 60 коп., 65 коп., 85 коп. Но округленность цены достигается обычно за счет покупателя, а не продавца. Общая сумма, которую потребители переплачивают за удовольствие приобретать товары по круглым ценам, накопляется весьма внушительная. Кто-то дал себе труд, задолго до последней войны, приблизительно подсчитать ее, и оказалось, что население прежней России ежегодно переплачивало в виде разницы между круглыми и некруглыми товарными ценами не менее 30 миллионов рублей. Не слишком ли дорогая дань невинной слабости к округлениям?

Источник: Я.И. Перельман. Занимательная арифметика. «Время» 1926.

Похожие записи

Тетради «KUMON.Математика» Ни для кого не секрет, что материалы, которые обычно используют для обучения детей в школе, скучны. Конечно здесь многое зависит от учителя. Хороший п...
Десятичная система счисления... В русском языке, а также в языках других народов названия всех чисел до миллиона составляются из 37 слов, обозначающих числа 1, 2, 3, 4, 5, 6, 7, 8...
О числах 37 и 41 Число 37 обладает многими любопытными свойствами. Так, умноженное на 3 и на числа, кратные 3 (до 27 включительно), оно дает произведения, изображаемые...
Числовые курьезы Очень легко запомнить квадраты таких чисел, как 11, 111, 1111 и т д. А именно: 112 = 121; 1112 = 12 321; 11112 = 1 234 321 и т. д. Нетрудно...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *