Архив за месяц: Декабрь 2009

Аналогия, индукция и дедукция

Аналогия, индукция и дедукция

Необходимым компонентом познавательного процесса являются такие формы умозаключения, как аналогия, индукция и дедукция.

В процессе аналогии получается вероятное знание, но это вероятное знание несет в себе нечто новое, помогающее нам разбираться в окружающей обстановке и предвидеть направление развития данного явления или события.

Познание окружающего мира человек начинает с изучения единичных вещей, явлений, фактов. Идя от частных случаев, он приходит к общему правилу, от фактов — к обобщению. Никакое теоретическое мышление вообще не было бы возможно, если бы человек индуктивным путем не приходил к установлению тех или иных общих положений. Пока человек не изучил на практике различные металлы, он не знал общего правила, по которому можно определить пригодность того или иного металла, например, для выделки сверла или ножа. Пока человек не познакомился с отдельными жидкостями, он не мог знать такого общего правила, что «все жидкости упруги». Пока человек в процессе трудовой деятельности не начал исследовать отдельные газы, он и представления не имел об общем законе равномерного давления газов на стенки сосудов. Д. И. Менделеев, изучив отдельные элементы, открыл периодический закон химических элементов.

Читать далее

Заключение по аналогии

Всегда желательно предугадать результат или, по крайней мере, некоторые его черты с той или иной степенью правдоподобия. Такие правдоподобные догадки часто основываются на аналогии.

Так, пусть нам известно, что центр тяжести однородного треугольника совпадает с центром тяжести трех его вершин (т. е. трех материальных точек одинаковой массы, помещенных в трех вершинах треугольника). Зная это, мы можем предположить, что центр тяжести однородного тетраэдра совпадает с центром тяжести его четырех вершин.

Такая догадка есть «заключение по аналогии». Зная, что треугольник и тетраэдр похожи друг на друга во многих отношениях, мы высказываем догадку, что они похожи друг на друга еще в одном отношении. Было бы нелепо из правдоподобия таких догадок выводить их истинность, но было бы так же (и даже еще более) нелепо пренебрегать этими правдоподобными предположениями.

Читать далее

Предположение Гольдбаха

Если вы хотите наблюдать жизнь птиц так, чтобы была некоторая возможность получить интересные результаты, то вы должны быть в какой-то степени знакомы с птицами, интересоваться ими. Точно так же, если вы хотите наблюдать числа, вы должны интересоваться ими и в какой-то степени быть знакомы с ними. Вы должны различать четные и нечетные числа, должны знать квадраты 1, 4, 9, 16, 25, … и простые числа, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, … (лучше выделить 1 как «единицу» и не причислять ее к простым числам). Даже со столь скромными знаниями вы смогли бы подметить кое-что интересное.

Читать далее

Как решать задачу

Как решать задачу

Мы знакомимся с задачей

С чего мне начать? Начните с формулировки задачи.

Что я могу сделать? Представьте себе задачу как целое, как можно яснее и нагляднее. Пока не вдавайтесь в детали.

Читать далее